
Malaysian Journal of Mathematical Sciences 18(3): 675–696 (2024)
https://doi.org/10.47836/mjms.18.3.14

Malaysian Journal of Mathematical Sciences

Journal homepage: https://mjms.upm.edu.my

Dynamics and Adaptive Control of a Novel 5D Hyperchaotic System: Either
Hidden Attractor or Self-excited with Unusual Nature of Unstable Equilibria

Sagban, L. J.1 and Shukur, A. A.∗1

1Department of Mathematics, Faculty of Computer Science and Mathematics,
University of Kufa, Iraq

E-mail: shukur.math@gmail.com
∗Corresponding author

Received: 16 January 2024
Accepted: 25 March 2024

Abstract

In 2020, J. Sprott proposed a new three dimensional chaotic systemwith special features such like
1) dissipative and time-reversible; 2) no equilibrium point; 3) lien of initial conditions goes to
the attractor. We observed that an extension of the so-called Sprott’s 2020 system to four dimen-
sional system with complex dynamics showed either chaotic or hyperchaotic with unbounded
orbits. In this paper, a novel five dimensional hyperchaotic system based on Sprott’s 2020 sys-
tem has been proposed. The proposed system shows complex dynamics like hyperchaotic. The
proposed system can be classified as a hidden attractor where no equilibrium point appeared or
self-excited where an unusual nature of unstable equilibrium points connected to a very com-
plicated function called Lambert W appeared. The dynamical properties of such system are
discovered by computing the Lyapunov exponents and bifurcation diagram. Adaptive control
to the proposed system was provided.
Keywords: hyperchaotic system; hidden attractor; equilibrium point; LambertW function.
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1 Introduction

Chaos phenomenamotivated researchers to propose a large number of chaotic systems during
the last two decades. Chaos is an applicable object almost everywhere, such as in weather fore-
casting [23], telecommunication [26, 2], vibration control systems [8], biological modeling [21]
and others. During the last decades, researchers attempted to obtain a chaotic systems with spe-
cial characteristics such as the type of the equilibrium points, the following special systems were
extra cited after the first system introduced after Lorenz’s system (in [13]):

• Wei’s system which has no equilibria, see [30].
• Wang’s system which has only one stable equilibrium, see [33].
• Jafari and Sprott considered a chaotic system with line equilibrium, see [9]. Another exam-

ple of chaotic system with line equilibrium was obtained in [20].
• Wang’s system with saddle-focus equilibrium, see [29].
• Jafari et al. considered a chaotic system with surfaces of equilibria, see [10].

Chaotic systemswithmore than onepositive Lyapunov exponentwere first indicated byRössler
in the late 1970s, which were called hyperchaotic [18]. In cases of hyperchaotic behavior, the
Shilnikov approach may not be helpful in verifying the chaos of such systems due to their unique
features, as they cannot have either a homoclinic or heteroclinic orbit. Thus, hyperchaotic sys-
tems are more complicated. Later, the investigations of hyperchaotic systems rapidly grew, and
their application appeared in different areas, especially secure communications due to their high
complexity, which shows no possibility to retrieve hidden messages. For instance, Ammar et al.
[14] proposed a 3-dimensional hyperbolic function conservative chaotic system and selected two
sequences generated by this system, which are combinedwith a self-invertible matrix for color im-
age encryption. Khan et al. in [11] proposed a hyperbolic memristor based 6-dimensional chaotic
model for encryption. A square image encrypted by using a symmetrical high four dimensional
hyperchaotic system with two exponential functions in [22]. An unusual complicated chaotic
system was proposed in [19] with an image encryption application. Comparing with different
methods of image encryption like [15], image encryption based on hyperchaotic systems is very
successful.

A new method of communication encryption involved to 6-dimensional hyperchaotic Lorenz
system with circuit simulation to verify the security of the communication scheme was described
in [32]. A 6-dimensional hyperchaotic system was applied to complete the signal encryption
and decryption circuit design of a secure communication scheme in [6]. A secure communica-
tion based on a microcontroller corresponds to a new 5-dimensional hyperchaotic system [28].
A memristive cellular neural network hyperchaotic system and a new 5-dimensional memristive
hyperchaotic system based on hyperchaotic Lu system were presented in [16, 31], respectively. A
new 5-dimensional hyperchaotic system with three equilibrium points and deduce that the new
hyperchaotic system has three positive Lyapunov exponents was proposed in [5].

On the other hand, the literature suggests that one of the earliest control strategies for resolv-
ing the synchronization issue was the active control strategy. In this regard, Bai and Lonngren in
[3, 4] showed that active control theory may synchronize connected Lorenz systems. At the simu-
lation level, the synchronizationwas confirmed. A control strengthmatrix was added to the active
control by Tang et al. [25], where they demonstrated that it is easier to accomplish total synchro-
nization of chaos using this enhanced strategy. The latter was verified by numerical simulations
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on the Rössler, Liu’s four-scroll, and Chen systems. Furthermore, Yassen [34] reported on the syn-
chronizations between two distinct chaotic systems, namely the Lorenz and Lu systems, Chen and
Lu system, and Lorenz and Chen systems. However, Perez-Cruz et al. [17] looked into the syn-
chronization of a new three-dimensional chaotic system by using Lyapunov analysis to design a
nonlinear controller that guaranteed the synchronization error’s exponential convergence, and the
outcomes of their numerical simulation confirmed the controller’s excellent performance. In [27],
Varan andAkful used a Lyapunov function to synchronize a hyperchaotic system and attain global
asymptotic stability. The efficacy of the suggested active control approach was verified using nu-
merical analysis. Finally, Zhu and Du in [35] used active control to solve the anti-synchronization
of systems, and numerical simulations were used to confirm the control’s viability. Recently, anti-
synchronization of a novel 5-dimensional hyperchaotic system was investigated in [1].

Besides, the phenomenon of hidden attractor has a very rapid rate of investigation where the
basin of attraction does not contain neighbourhoods of the equilibrium points and has been inves-
tigated by a large number of researchers. Kuznetsov et al. in [12] provided a simulation of hidden
attractors in dynamical systems. Such examples of hidden attractors are chaotic systems without
equilibrium points.

This paper is organized as follows: in Section 2, we propose a novel 5-dimensional hyper-
chaotic system with five non-linear terms and five linear terms. In Section 3, system analysis such
as stability, dissipativity, and the Kaplan Yorke dimension were investigated. In Section 4, the
possibility of the synchronization scheme of the proposed systems was studied.

2 The Proposed System

Sprott in [24] posed a crucial question regarding the need for additional examples of chaos:
"Do we need more chaos examples?" In response to this question, Sprott provided a positive an-
swer by introducing a new three dimensional chaotic system:

ẋ = y,

ẏ = −x− sgn(z)y,

ż = y2 − e−x2

.

(1)

System (1) has the following characteristics: 1) dissipative and time-reversible; 2) has no equilib-
ria; 3) has multifractal attractor that is hidden but whose basin includes the whole of the three-
dimensional space so it has a lien of initial conditions goes to the attractor; 4) has initial conditions
seem to point toward the attractor, which has a capacity dimension of 3 and fills all of space with
a very nonuniform measure.

Observation. Given the importance of hyperchaotic systems, we attempted to extend Sprott’s
3-dimensional system to a 4-dimensional version. However, all our attempts resulted in systems
that were either chaotic or hyperchaotic but had unbounded orbits, which we found to be less
interesting.
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Based on Sprott’s system, we propose the following five dimensional hyperchaotic:

ẋ = y − αwsgn(z)− σu,

ẏ = −x− zy,

ż = y2 − e−x2 − β,

ẇ = γx− νy,

u̇ = ξ + sin(z),

(2)

where α, β, γ, ν, ξ, σ are system’s parameter and x, y, z, w, u are system variables.

2.1 Dynamical analysis

In what follows, we test the most important peculiarities of complex dynamical systems such
as stability, dissipativity, Lyapunov exponents (LEs) and bifurcation diagram.

2.2 Symmetry

System (2) possesses the invariance with the coordinate transformation,

(x, y, z, w, u) → (−x,−y, z,−w,−u).

The system (2) is symmetrical about the coordinate axis z.

2.3 Stability

To set the stability and have a better understanding of the nature of the appeared equilibrium
points, we will provide a brief introduction into the LambertW function. The following equation
has an infinity countable number of solutions:

ses = z,

where z is a complex number. For integers k represented by Wk(z). A Lambert W function
branches are:

1. When k = 0, the branches called the principal branch.
2. When k = −1, every branch excludes the real axis has range ofW1(z) includes (−∞,−1/ e].

Note that onlyW0(z) has positive values range, see Figure 1. When z = −1/ e, there exists a double
root s = −1 of the basic equation ses = z. The typical branch selection process assigns

W0(−1/ e) = W−1(−1/ e) = −1.

Each branch is an analytic complex function. The Lambert W function has a very special graphic
and complicated structure, see [7].
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Figure 1: The graph of Lambert W function.

Next, to show the stability of system (2), the following algebraic equations must be held:

y − αwsgn(z)− σu = 0, (3)

−x− yz = 0, (4)

y2 − e−x2

− β = 0, (5)

γx− νy = 0, (6)

ξ + sin(z) = 0. (7)

Solving the equations in (3)-(7) shows the following two cases:

1. If ξ = 0 in (7), then it follows that the systems (2) has no equilibrium point. In this case,
attractors generated by system (2) are hidden strange attractors.

2. From (6) follows that x = ν
γ y. By substituting the value of x in (5), we obtain that

y =
1

ν

√√√√√γ2W

ν2 exp
[
βν2

γ2

]
γ2

+ βν2,

and

x =
1

γ

√√√√√γ2W

ν2 exp
[
βν2

γ2

]
γ2

+ βν2.
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Again by substituting the values of x and y in (4), we obtain that z = −ν
γ .Obviously, ifw = 0

and

u =
1

σν

√√√√√γ2W

ν2 exp
[
βν2

γ2

]
γ2

+ βν2,

then the Equation (3) is equal to zero. Now, if ξ = sin
(

−ν
γ

)
in (7), then a very complicated

nature of equilibrium points appeared and it is related to so-called Lambert W function,
such as:

S1,1 =



1
γ

√
γ2W

(
ν2 exp

[
βν2

γ2

]
γ2

)
+ βν2,

1
ν

√
γ2W

(
ν2 exp

[
βν2

γ2

]
γ2

)
+ βν2,

−ν
γ ,

0,

1
σν

√
γ2W

(
ν2 exp

[
βν2

γ2

]
γ2

)
+ βν2,

and

S1,2 =



−1
γ

√
γ2W

(
ν2 exp

[
βν2

γ2

]
γ2

)
+ βν2,

−1
ν

√
γ2W

(
ν2 exp

[
βν2

γ2

]
γ2

)
+ βν2,

−ν
γ ,

0,

−1
σν

√
γ2W

(
ν2 exp

[
βν2

γ2

]
γ2

)
+ βν2,

whereW (.) is a Lambert W function.

This obviously shows that the equilibrium points of (2) has a complicated nature, for instance,
the stability depends on the value of β, γ, ν, σ under the action of the mentioned function. In
particular, setting the stability of the system (2) is possible by calculating the Jacobian matrices at
the possible equilibrium points:

J0 =



0 1 −2αw dirac(z) −αsgn(z) −σ

−1 −z −y 0 0

2xe−x2

2y 0 0 0

γ −ν 0 0 0
0 0 cos(z) 0 0


, (8)
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where dirc(z) is the Dirac function. The corresponding characteristic polynomial of JS1,1;S1,2
is

P (λ) = λ5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ1, (9)

where 

a5 = −1,

a4 = 1,

a3 = αγ − 2J2 − 1,

a2 = αν − αγ − JK − σ cos
(

ν
γ

)
K,

a1 = 2ανJ2 − ανjK + 2σ cos
(

ν
γ

)
J + σ cos

(
ν
γ

)
K,

(10)

J =
1

γ

√√√√√γ2W

ν2 exp
[
βν2

γ2

]
γ2

+ βν2,

and

K =
2

ν

√√√√√γ2W

ν2 exp
[
βν2

γ2

]
γ2

+ βν2

exp

−
γ2W

(
ν2 exp

[
βν2

γ2

]
γ2

)
+ βν2

ν2


 .

In both above cases, system (2) shows a complex dynamics such hperchaotic behavior indicates
when the initial condition is x0, y0, z0, w0, u0 = (1, 1, 1, 1, 1) and α = 1.5, β = 30.9, γ = 3.5,
ν = 0.2, σ = 0.5, ξ = sin

(−0.2
3.5

)
= −0.0571118. In the following, we calculate the eigenvalues

of the second case for those parameters. The eigenvalues are
λ1,2 = ±2.3405,

λ3,4 = 0.0208± 3.2166i,

λ5 = 0.

(11)

Due to the Routh-Hurwitz stability criterion and (11), obviously the system (2) has two unstable
saddle-focus node points.

2.4 The Kaplan Yorke fractional dimension

The Kaplan Yorke fractional dimension, which presents the complexity of the attractor, is de-
fined by

DKY = j +

∑j
i=1 Li

|Lj+1|
, (12)

where j is the largest integer satisfying ∑j
i=1 Li ≥ 0 and ∑j+1

i=1 Li < 0. The LEs and the Ka-
plan Yorke fractional dimension of system (2) for ξ = 0 or ξ = −0.0571118 with fixing α = 1.5,
β = 30.9, γ = 3.5, ν = 0.2, σ = 0.5 are shown in Table 1 (see Figure 2).
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Table 1: LEs and DY K of system (2).

The values of ξ LEs DKY

ξ = 0 L1 = 0.48938 4.832
L2 = 0.19982
L3 = 0
L4 = −0.18097
L5 = −0.61035

ξ = −0.0571118 L1 = 0.55705 4.854
L2 = 0.23368
L3 = 0
L4 = −0.19908
L5 = −0.69207

Figure 2: The Lyapunov exponents of the system (2) when ξ = 0.

2.5 Dissipativity

The dissipativity of system (2) shows

V =
∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
+

∂ẇ

∂w
+

∂u̇

∂u
= −z. (13)

Obviously, Sines, the dissipativity of the trajectory of (2) due to the dissipation is shown by the
time-averaged value −z(t). In [29] was established the average value of any function of time q(t)
which is

q(t) = lim
t→∞

(∫ t

t0

q(t)qt/t− t0

)
. (14)

Now, one can verify that the average of z(t) of system (2) is grater than zero. This can be seen
in Figure 3. So, (2) is dissipative. Moreover, in Figures 4 - 6, the bifurcation diagrams for varied
values ofα, β, ξ are shown. The phase portraits of the proposed system (2) is presented in Figure 7.
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Figure 3: Average value of z(t) of the system (2).

Observation 2. Other notable remarkwe observed is that the system (2) preserves the features
of the original system Sprott’s systemwhen ξ = 0while only II and III properties of Sprott’s system
were preserved when ξ = −0.0571118.

Figure 4: Bifurcation diagram of system (2) when varying α.
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Figure 5: Bifurcation diagram of system (2) when varying β.

Figure 6: Bifurcation diagram of system (2) when varying ξ.
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Figure 7: The phase plane of system (2) when ξ = 0.

3 Coexisting Attractors

In order to study the phenomenon of coexisting attractors, we must first determine how the
parameters and initial conditions affect the system’s behavior (2).

For high-dimensional (dim > 3) hyperchaotic systems, its not surprising if the system
shows chaotic behavior or periodic orbit. For instance, when the initial condition are given by
(x0, y0, z0, w0) = (1, 1, 1, 1), the system (2) reveals chaotic dynamics if β = ξ = 0 where LEs are:
L1 = 0.09785, L2 = 0, L3 = −0.00831, L4 = −0.11429, L5 = −0.27701 (see Figure 8) or displays a
coexisting of periodic orbit if α = 2, β = ξ = 0, γ = ν = 1.

Figure 8: The phase plane of system (2) when β = ξ = 0.
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4 Adaptive Control of the Proposed Chaotic System

Let define the driver system by

ẋ1 = x2 − αx4sgn(x3)− σx5,

ẋ2 = −x1 − x2x3,

ẋ3 = x2
2 − e−x2

1 − β,

ẋ4 = γx1 − νx2,

ẋ5 = ξ + sinx3.

(15)

In what follow, we provide the adaptive synchronization of identical novel hyperchaotic system
with parameters which are not valued. The response system is presented as

ẋ1 = x2 − αx4sgn(x3)− σx5 + u1,

ẋ2 = −x1 − x2x3 + u2,

ẋ3 = x2
2 − e−x2

1 − β + u3,

ẋ4 = γx1 − νx2 + u4,

ẋ5 = ξ + sinx3 + u5,

(16)

where x1, x2, x3, x4, x5 are the states, α, β, γ, ν, σ, ξ are unknown system parameters and

U = [u1, u2, u3, u4, u5]
T ,

is the adaptive controller to be determined. We consider the adaptive controller defined by

u1 = −x2 + εα(t)x4sgn(x3) + εσ(t)x5 − k1x1,

u2 = x1 + x2x3 − k2x2,

u3 = −x2
2 + e−x2

1 + εβ(t)− k3x3,

u4 = −εγ(t)x1 + εν(t)x2 − k4x4,

u5 = −εξ(t)− sin(t)x3 − k5x5,

(17)

where εα, εβ , εm, εd, εr denote the estimated parameters of the system coefficients α, β,m, d, r re-
spectively and k1, k2, k3, k4, k5 > 0. By substituting (17) into (16), we obtain the closed-loop
system: 

ẋ1 = −[α− εα(t)]x4sgn(x3)− [σ − εσ(t)]x5 − k1x1,

ẋ2 = −k2x2,

ẋ3 = −[β − εβ(t)]− k3x3,

ẋ4 = [γ − εγ(t)]x1 − [ν − εν(t)]x2 − k4x4,

ẋ5 = [ξ − εξ(t)]− k5x5.

(18)

Accordingly, let us denote the error estimation of the parameters as follows:

ε1(t) = [α− εα(t)],

ε2(t) = [β − εβ(t)],

ε3(t) = [γ − εγ(t)],

ε4(t) = [ν − εν(t)],

ε5(t) = [ξ − εξ(t)],

ε6(t) = [σ − εσ(t)].

(19)
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Based on Equation (19), the derivatives of parameter estimation errors can be expressed as:

ε̇1 = −ε̇α,

ε̇2 = −ε̇β ,

ε̇3 = −ε̇γ ,

ε̇4 = −ε̇ν ,

ε̇5 = −ε̇σ.

(20)

Next, we reduce (18) to 

ẋ1 = −ε1x4sgn(x3)− ε6x5 − k1x1,

ẋ2 = −k2x2,

ẋ3 = −ε2 − k3x3,

ẋ4 = ε3x1 − ε4x2 − k4x4,

ẋ5 = ε5 − k5x5.

(21)

Theorem 4.1. If the controller are chosen as (17) and let the parameter’s update laws is

ε̇1(t) = x1x4sgn(x3)− η(α− εα),

ε̇2(t) = x3 − η(β − εβ),

ε̇3(t) = −x1x4 − η(γ − εγ),

ε̇4(t) = x2x4 − η(ν − εν),

ε̇5(t) = x5 − η(ξ − εξ),

ε̇6(t) = x1x5 − η(σ − εσ).

(22)

Then, the synchronization between the driver system (17) and the response system (16) is approached if
k1, k2, k3, k4, k5 are positive constants.

Proof. We consider the Lyapunov function defined by

V (x1, x2, x3, x4, x5, ε1, ε2, ε3, ε4, ε5, ε6) =
1

2

(
x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + ε21 + ε22 + ε23 + ε24 + ε25 + ε26

)
.

Differentiating the above function, we have

V̇ (x1, x2, x3, x4, x5, ε1, ε2, ε3, ε4, ε5, ε6) =

(x1ẋ1 + x2ẋ2 + x3ẋ3 + x4ẋ4 + x5ẋ5 + ε1ε̇1 + ε2ε̇2 + ε3ε̇3 + ε4ε̇4 + ε5ε̇5 + ε6ε̇6) .

Taking the time derivative of the above function along the trajectories of (22), we have

V̇ = −(k1x
2
1 + k2x

2
2 + k3x

2
3 + k4x

2
4 + k5x

2
5 + ηε21 + ηε22 + ηε23 + ηε24 + ηε25 + ηε26), (23)

which is a negative function for k1, k2, k3, k4, k5 > 0. Thus, due to the Lyapunov stability theory,
we obtained that ε1(t) → 0, ε2(t) → 0, ε3(t) → 0, ε4(t) → 0, ε5(t) → 0, ε6(t) → 0 exponentially
when t → ∞.
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4.1 Numerical simulation

Using the fourth-order Runge-Kutta method, we numerically simulate the adaptive control
system introduced for system (16) with the adaptive control law (17) and the parameter update
law (22). The parameters of system (2) are selected as α = 1.5, σ = 0.5, β = 30.9, γ = 3.5, ν =
0.2, ξ = 0. In addition, we take the adaptive and update laws as ki = ηi = 2, where i = 1, . . . , 5.
Suppose that the initial values of the estimated parameters are (0, 0, 0, 0, 0) and the initial values of
system (2) are taken as (1, 1, 1, 1, 1). When the adaptive control law (22) and the parameter update
law (18) are used, the controlled system converges to equilibrium E = (0, 0, 0, 0, 0) exponentially,
as shown in Figure 9. The time responses of the error parameters are shown in Figures 10 - 15,
while the time responses of the controlled system are displayed in Figures 16 - 20.

Figure 9: Time series of anti-synchronization for error dynamical system (22) with controller (17).

Figure 10: Time response of εσ .
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Figure 11: Time response of εν .

Figure 12: Time response of εβ .
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Figure 13: Time response of εγ .

Figure 14: Time response of εξ .
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Figure 15: Time response of εα.

Figure 16: Time response of x4(t).
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Figure 17: Time response of x5(t).

Figure 18: Time response of x2(t).
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Figure 19: Time response of x3(t).

Figure 20: Time response of x1(t).

5 Conclusion

The complex dynamics of a novel five-dimensional hyperchaotic system involved with prop-
erty that is uniformly measured system was investigated. Analyzing the proposed system shows
that the proposed system can be classified either hidden attractor where no equilibrium appeared
or self-excited with unusual nature of equilibrium points connected to Lambert W function ap-
peared. In addition, we provided the adaptive control of the new system. In particular, the other
dynamics of the introduced system of this paper are expected to be further studied.
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